How to manage memory
This guide assumes familiarity with the following:
A key feature of chatbots is their ability to use content of previous conversation turns as context. This state management can take several forms, including:
- Simply stuffing previous messages into a chat model prompt.
- The above, but trimming old messages to reduce the amount of distracting information the model has to deal with.
- More complex modifications like synthesizing summaries for long running conversations.
We’ll go into more detail on a few techniques below!
Setup
You’ll need to install a few packages, and set any LLM API keys:
Let’s also set up a chat model that we’ll use for the below examples:
Pick your chat model:
- OpenAI
- Anthropic
- FireworksAI
- MistralAI
- Groq
- VertexAI
Install dependencies
- npm
- yarn
- pnpm
npm i @langchain/openai
yarn add @langchain/openai
pnpm add @langchain/openai
Add environment variables
OPENAI_API_KEY=your-api-key
Instantiate the model
import { ChatOpenAI } from "@langchain/openai";
const model = new ChatOpenAI({
model: "gpt-3.5-turbo",
temperature: 0
});
Install dependencies
- npm
- yarn
- pnpm
npm i @langchain/anthropic
yarn add @langchain/anthropic
pnpm add @langchain/anthropic
Add environment variables
ANTHROPIC_API_KEY=your-api-key
Instantiate the model
import { ChatAnthropic } from "@langchain/anthropic";
const model = new ChatAnthropic({
model: "claude-3-sonnet-20240229",
temperature: 0
});
Install dependencies
- npm
- yarn
- pnpm
npm i @langchain/community
yarn add @langchain/community
pnpm add @langchain/community
Add environment variables
FIREWORKS_API_KEY=your-api-key
Instantiate the model
import { ChatFireworks } from "@langchain/community/chat_models/fireworks";
const model = new ChatFireworks({
model: "accounts/fireworks/models/firefunction-v1",
temperature: 0
});
Install dependencies
- npm
- yarn
- pnpm
npm i @langchain/mistralai
yarn add @langchain/mistralai
pnpm add @langchain/mistralai
Add environment variables
MISTRAL_API_KEY=your-api-key
Instantiate the model
import { ChatMistralAI } from "@langchain/mistralai";
const model = new ChatMistralAI({
model: "mistral-large-latest",
temperature: 0
});
Install dependencies
- npm
- yarn
- pnpm
npm i @langchain/groq
yarn add @langchain/groq
pnpm add @langchain/groq
Add environment variables
GROQ_API_KEY=your-api-key
Instantiate the model
import { ChatGroq } from "@langchain/groq";
const model = new ChatGroq({
model: "mixtral-8x7b-32768",
temperature: 0
});
Install dependencies
- npm
- yarn
- pnpm
npm i @langchain/google-vertexai
yarn add @langchain/google-vertexai
pnpm add @langchain/google-vertexai
Add environment variables
GOOGLE_APPLICATION_CREDENTIALS=credentials.json
Instantiate the model
import { ChatVertexAI } from "@langchain/google-vertexai";
const model = new ChatVertexAI({
model: "gemini-1.5-pro",
temperature: 0
});
Message passing
The simplest form of memory is simply passing chat history messages into a chain. Here’s an example:
import { HumanMessage, AIMessage } from "@langchain/core/messages";
import {
ChatPromptTemplate,
MessagesPlaceholder,
} from "@langchain/core/prompts";
const prompt = ChatPromptTemplate.fromMessages([
[
"system",
"You are a helpful assistant. Answer all questions to the best of your ability.",
],
new MessagesPlaceholder("messages"),
]);
const chain = prompt.pipe(llm);
await chain.invoke({
messages: [
new HumanMessage(
"Translate this sentence from English to French: I love programming."
),
new AIMessage("J'adore la programmation."),
new HumanMessage("What did you just say?"),
],
});
AIMessage {
lc_serializable: true,
lc_kwargs: {
content: `I said "J'adore la programmation," which means "I love programming" in French.`,
tool_calls: [],
invalid_tool_calls: [],
additional_kwargs: { function_call: undefined, tool_calls: undefined },
response_metadata: {}
},
lc_namespace: [ "langchain_core", "messages" ],
content: `I said "J'adore la programmation," which means "I love programming" in French.`,
name: undefined,
additional_kwargs: { function_call: undefined, tool_calls: undefined },
response_metadata: {
tokenUsage: { completionTokens: 21, promptTokens: 61, totalTokens: 82 },
finish_reason: "stop"
},
tool_calls: [],
invalid_tool_calls: []
}
We can see that by passing the previous conversation into a chain, it can use it as context to answer questions. This is the basic concept underpinning chatbot memory - the rest of the guide will demonstrate convenient techniques for passing or reformatting messages.
Chat history
It’s perfectly fine to store and pass messages directly as an array, but we can use LangChain’s built-in message history class to store and load messages as well. Instances of this class are responsible for storing and loading chat messages from persistent storage. LangChain integrates with many providers but for this demo we will use an ephemeral demo class.
Here’s an example of the API:
import { ChatMessageHistory } from "langchain/stores/message/in_memory";
const demoEphemeralChatMessageHistory = new ChatMessageHistory();
await demoEphemeralChatMessageHistory.addMessage(
new HumanMessage(
"Translate this sentence from English to French: I love programming."
)
);
await demoEphemeralChatMessageHistory.addMessage(
new AIMessage("J'adore la programmation.")
);
await demoEphemeralChatMessageHistory.getMessages();
[
HumanMessage {
lc_serializable: true,
lc_kwargs: {
content: "Translate this sentence from English to French: I love programming.",
additional_kwargs: {},
response_metadata: {}
},
lc_namespace: [ "langchain_core", "messages" ],
content: "Translate this sentence from English to French: I love programming.",
name: undefined,
additional_kwargs: {},
response_metadata: {}
},
AIMessage {
lc_serializable: true,
lc_kwargs: {
content: "J'adore la programmation.",
tool_calls: [],
invalid_tool_calls: [],
additional_kwargs: {},
response_metadata: {}
},
lc_namespace: [ "langchain_core", "messages" ],
content: "J'adore la programmation.",
name: undefined,
additional_kwargs: {},
response_metadata: {},
tool_calls: [],
invalid_tool_calls: []
}
]
We can use it directly to store conversation turns for our chain:
await demoEphemeralChatMessageHistory.clear();
const input1 =
"Translate this sentence from English to French: I love programming.";
await demoEphemeralChatMessageHistory.addMessage(new HumanMessage(input1));
const response = await chain.invoke({
messages: await demoEphemeralChatMessageHistory.getMessages(),
});
await demoEphemeralChatMessageHistory.addMessage(response);
const input2 = "What did I just ask you?";
await demoEphemeralChatMessageHistory.addMessage(new HumanMessage(input2));
await chain.invoke({
messages: await demoEphemeralChatMessageHistory.getMessages(),
});
AIMessage {
lc_serializable: true,
lc_kwargs: {
content: 'You just asked me to translate the sentence "I love programming" from English to French.',
tool_calls: [],
invalid_tool_calls: [],
additional_kwargs: { function_call: undefined, tool_calls: undefined },
response_metadata: {}
},
lc_namespace: [ "langchain_core", "messages" ],
content: 'You just asked me to translate the sentence "I love programming" from English to French.',
name: undefined,
additional_kwargs: { function_call: undefined, tool_calls: undefined },
response_metadata: {
tokenUsage: { completionTokens: 18, promptTokens: 73, totalTokens: 91 },
finish_reason: "stop"
},
tool_calls: [],
invalid_tool_calls: []
}
Automatic history management
The previous examples pass messages to the chain explicitly. This is a
completely acceptable approach, but it does require external management
of new messages. LangChain also includes an wrapper for LCEL chains that
can handle this process automatically called
RunnableWithMessageHistory
.
To show how it works, let’s slightly modify the above prompt to take a
final input
variable that populates a HumanMessage
template after
the chat history. This means that we will expect a chat_history
parameter that contains all messages BEFORE the current messages instead
of all messages:
const runnableWithMessageHistoryPrompt = ChatPromptTemplate.fromMessages([
[
"system",
"You are a helpful assistant. Answer all questions to the best of your ability.",
],
new MessagesPlaceholder("chat_history"),
["human", "{input}"],
]);
const chain2 = runnableWithMessageHistoryPrompt.pipe(llm);
We’ll pass the latest input to the conversation here and let the
RunnableWithMessageHistory
class wrap our chain and do the work of
appending that input
variable to the chat history.
Next, let’s declare our wrapped chain:
import { RunnableWithMessageHistory } from "@langchain/core/runnables";
const demoEphemeralChatMessageHistoryForChain = new ChatMessageHistory();
const chainWithMessageHistory = new RunnableWithMessageHistory({
runnable: chain2,
getMessageHistory: (_sessionId) => demoEphemeralChatMessageHistoryForChain,
inputMessagesKey: "input",
historyMessagesKey: "chat_history",
});
This class takes a few parameters in addition to the chain that we want to wrap:
- A factory function that returns a message history for a given session id. This allows your chain to handle multiple users at once by loading different messages for different conversations.
- An
inputMessagesKey
that specifies which part of the input should be tracked and stored in the chat history. In this example, we want to track the string passed in as input. - A
historyMessagesKey
that specifies what the previous messages should be injected into the prompt as. Our prompt has aMessagesPlaceholder
namedchat_history
, so we specify this property to match. (For chains with multiple outputs) anoutputMessagesKey
which specifies which output to store as history. This is the inverse ofinputMessagesKey
.
We can invoke this new chain as normal, with an additional
configurable
field that specifies the particular sessionId
to pass
to the factory function. This is unused for the demo, but in real-world
chains, you’ll want to return a chat history corresponding to the passed
session:
await chainWithMessageHistory.invoke(
{
input:
"Translate this sentence from English to French: I love programming.",
},
{ configurable: { sessionId: "unused" } }
);
AIMessage {
lc_serializable: true,
lc_kwargs: {
content: `The translation of "I love programming" in French is "J'adore la programmation."`,
tool_calls: [],
invalid_tool_calls: [],
additional_kwargs: { function_call: undefined, tool_calls: undefined },
response_metadata: {}
},
lc_namespace: [ "langchain_core", "messages" ],
content: `The translation of "I love programming" in French is "J'adore la programmation."`,
name: undefined,
additional_kwargs: { function_call: undefined, tool_calls: undefined },
response_metadata: {
tokenUsage: { completionTokens: 20, promptTokens: 39, totalTokens: 59 },
finish_reason: "stop"
},
tool_calls: [],
invalid_tool_calls: []
}
await chainWithMessageHistory.invoke(
{
input: "What did I just ask you?",
},
{ configurable: { sessionId: "unused" } }
);
AIMessage {
lc_serializable: true,
lc_kwargs: {
content: 'You just asked for the translation of the sentence "I love programming" from English to French.',
tool_calls: [],
invalid_tool_calls: [],
additional_kwargs: { function_call: undefined, tool_calls: undefined },
response_metadata: {}
},
lc_namespace: [ "langchain_core", "messages" ],
content: 'You just asked for the translation of the sentence "I love programming" from English to French.',
name: undefined,
additional_kwargs: { function_call: undefined, tool_calls: undefined },
response_metadata: {
tokenUsage: { completionTokens: 19, promptTokens: 74, totalTokens: 93 },
finish_reason: "stop"
},
tool_calls: [],
invalid_tool_calls: []
}
Modifying chat history
Modifying stored chat messages can help your chatbot handle a variety of situations. Here are some examples:
Trimming messages
LLMs and chat models have limited context windows, and even if you’re
not directly hitting limits, you may want to limit the amount of
distraction the model has to deal with. One solution is to only load and
store the most recent n
messages. Let’s use an example history with
some preloaded messages:
await demoEphemeralChatMessageHistory.clear();
await demoEphemeralChatMessageHistory.addMessage(
new HumanMessage("Hey there! I'm Nemo.")
);
await demoEphemeralChatMessageHistory.addMessage(new AIMessage("Hello!"));
await demoEphemeralChatMessageHistory.addMessage(
new HumanMessage("How are you today?")
);
await demoEphemeralChatMessageHistory.addMessage(new AIMessage("Fine thanks!"));
await demoEphemeralChatMessageHistory.getMessages();
[
HumanMessage {
lc_serializable: true,
lc_kwargs: {
content: "Hey there! I'm Nemo.",
additional_kwargs: {},
response_metadata: {}
},
lc_namespace: [ "langchain_core", "messages" ],
content: "Hey there! I'm Nemo.",
name: undefined,
additional_kwargs: {},
response_metadata: {}
},
AIMessage {
lc_serializable: true,
lc_kwargs: {
content: "Hello!",
tool_calls: [],
invalid_tool_calls: [],
additional_kwargs: {},
response_metadata: {}
},
lc_namespace: [ "langchain_core", "messages" ],
content: "Hello!",
name: undefined,
additional_kwargs: {},
response_metadata: {},
tool_calls: [],
invalid_tool_calls: []
},
HumanMessage {
lc_serializable: true,
lc_kwargs: {
content: "How are you today?",
additional_kwargs: {},
response_metadata: {}
},
lc_namespace: [ "langchain_core", "messages" ],
content: "How are you today?",
name: undefined,
additional_kwargs: {},
response_metadata: {}
},
AIMessage {
lc_serializable: true,
lc_kwargs: {
content: "Fine thanks!",
tool_calls: [],
invalid_tool_calls: [],
additional_kwargs: {},
response_metadata: {}
},
lc_namespace: [ "langchain_core", "messages" ],
content: "Fine thanks!",
name: undefined,
additional_kwargs: {},
response_metadata: {},
tool_calls: [],
invalid_tool_calls: []
}
]
Let’s use this message history with the RunnableWithMessageHistory
chain we declared above:
const chainWithMessageHistory2 = new RunnableWithMessageHistory({
runnable: chain2,
getMessageHistory: (_sessionId) => demoEphemeralChatMessageHistory,
inputMessagesKey: "input",
historyMessagesKey: "chat_history",
});
await chainWithMessageHistory2.invoke(
{
input: "What's my name?",
},
{ configurable: { sessionId: "unused" } }
);
AIMessage {
lc_serializable: true,
lc_kwargs: {
content: "Your name is Nemo!",
tool_calls: [],
invalid_tool_calls: [],
additional_kwargs: { function_call: undefined, tool_calls: undefined },
response_metadata: {}
},
lc_namespace: [ "langchain_core", "messages" ],
content: "Your name is Nemo!",
name: undefined,
additional_kwargs: { function_call: undefined, tool_calls: undefined },
response_metadata: {
tokenUsage: { completionTokens: 6, promptTokens: 66, totalTokens: 72 },
finish_reason: "stop"
},
tool_calls: [],
invalid_tool_calls: []
}
We can see the chain remembers the preloaded name.
But let’s say we have a very small context window, and we want to trim
the number of messages passed to the chain to only the 2 most recent
ones. We can use the clear
method to remove messages and re-add them
to the history. We don’t have to, but let’s put this method at the front
of our chain to ensure it’s always called:
import {
RunnablePassthrough,
RunnableSequence,
} from "@langchain/core/runnables";
const trimMessages = async (_chainInput: Record<string, any>) => {
const storedMessages = await demoEphemeralChatMessageHistory.getMessages();
if (storedMessages.length <= 2) {
return false;
}
await demoEphemeralChatMessageHistory.clear();
for (const message of storedMessages.slice(-2)) {
demoEphemeralChatMessageHistory.addMessage(message);
}
return true;
};
const chainWithTrimming = RunnableSequence.from([
RunnablePassthrough.assign({ messages_trimmed: trimMessages }),
chainWithMessageHistory2,
]);
Let’s call this new chain and check the messages afterwards:
await chainWithTrimming.invoke(
{
input: "Where does P. Sherman live?",
},
{ configurable: { sessionId: "unused" } }
);
AIMessage {
lc_serializable: true,
lc_kwargs: {
content: 'P. Sherman is a fictional character who lives at 42 Wallaby Way, Sydney, from the movie "Finding Nem'... 3 more characters,
tool_calls: [],
invalid_tool_calls: [],
additional_kwargs: { function_call: undefined, tool_calls: undefined },
response_metadata: {}
},
lc_namespace: [ "langchain_core", "messages" ],
content: 'P. Sherman is a fictional character who lives at 42 Wallaby Way, Sydney, from the movie "Finding Nem'... 3 more characters,
name: undefined,
additional_kwargs: { function_call: undefined, tool_calls: undefined },
response_metadata: {
tokenUsage: { completionTokens: 26, promptTokens: 53, totalTokens: 79 },
finish_reason: "stop"
},
tool_calls: [],
invalid_tool_calls: []
}
await demoEphemeralChatMessageHistory.getMessages();
[
HumanMessage {
lc_serializable: true,
lc_kwargs: {
content: "What's my name?",
additional_kwargs: {},
response_metadata: {}
},
lc_namespace: [ "langchain_core", "messages" ],
content: "What's my name?",
name: undefined,
additional_kwargs: {},
response_metadata: {}
},
AIMessage {
lc_serializable: true,
lc_kwargs: {
content: "Your name is Nemo!",
tool_calls: [],
invalid_tool_calls: [],
additional_kwargs: { function_call: undefined, tool_calls: undefined },
response_metadata: {}
},
lc_namespace: [ "langchain_core", "messages" ],
content: "Your name is Nemo!",
name: undefined,
additional_kwargs: { function_call: undefined, tool_calls: undefined },
response_metadata: {
tokenUsage: { completionTokens: 6, promptTokens: 66, totalTokens: 72 },
finish_reason: "stop"
},
tool_calls: [],
invalid_tool_calls: []
},
HumanMessage {
lc_serializable: true,
lc_kwargs: {
content: "Where does P. Sherman live?",
additional_kwargs: {},
response_metadata: {}
},
lc_namespace: [ "langchain_core", "messages" ],
content: "Where does P. Sherman live?",
name: undefined,
additional_kwargs: {},
response_metadata: {}
},
AIMessage {
lc_serializable: true,
lc_kwargs: {
content: 'P. Sherman is a fictional character who lives at 42 Wallaby Way, Sydney, from the movie "Finding Nem'... 3 more characters,
tool_calls: [],
invalid_tool_calls: [],
additional_kwargs: { function_call: undefined, tool_calls: undefined },
response_metadata: {}
},
lc_namespace: [ "langchain_core", "messages" ],
content: 'P. Sherman is a fictional character who lives at 42 Wallaby Way, Sydney, from the movie "Finding Nem'... 3 more characters,
name: undefined,
additional_kwargs: { function_call: undefined, tool_calls: undefined },
response_metadata: {
tokenUsage: { completionTokens: 26, promptTokens: 53, totalTokens: 79 },
finish_reason: "stop"
},
tool_calls: [],
invalid_tool_calls: []
}
]
And we can see that our history has removed the two oldest messages
while still adding the most recent conversation at the end. The next
time the chain is called, trimMessages
will be called again, and only
the two most recent messages will be passed to the model. In this case,
this means that the model will forget the name we gave it the next time
we invoke it:
await chainWithTrimming.invoke(
{
input: "What is my name?",
},
{ configurable: { sessionId: "unused" } }
);
AIMessage {
lc_serializable: true,
lc_kwargs: {
content: "I'm sorry, I don't have access to your personal information. Can I help you with anything else?",
tool_calls: [],
invalid_tool_calls: [],
additional_kwargs: { function_call: undefined, tool_calls: undefined },
response_metadata: {}
},
lc_namespace: [ "langchain_core", "messages" ],
content: "I'm sorry, I don't have access to your personal information. Can I help you with anything else?",
name: undefined,
additional_kwargs: { function_call: undefined, tool_calls: undefined },
response_metadata: {
tokenUsage: { completionTokens: 22, promptTokens: 73, totalTokens: 95 },
finish_reason: "stop"
},
tool_calls: [],
invalid_tool_calls: []
}
await demoEphemeralChatMessageHistory.getMessages();
[
HumanMessage {
lc_serializable: true,
lc_kwargs: {
content: "Where does P. Sherman live?",
additional_kwargs: {},
response_metadata: {}
},
lc_namespace: [ "langchain_core", "messages" ],
content: "Where does P. Sherman live?",
name: undefined,
additional_kwargs: {},
response_metadata: {}
},
AIMessage {
lc_serializable: true,
lc_kwargs: {
content: 'P. Sherman is a fictional character who lives at 42 Wallaby Way, Sydney, from the movie "Finding Nem'... 3 more characters,
tool_calls: [],
invalid_tool_calls: [],
additional_kwargs: { function_call: undefined, tool_calls: undefined },
response_metadata: {}
},
lc_namespace: [ "langchain_core", "messages" ],
content: 'P. Sherman is a fictional character who lives at 42 Wallaby Way, Sydney, from the movie "Finding Nem'... 3 more characters,
name: undefined,
additional_kwargs: { function_call: undefined, tool_calls: undefined },
response_metadata: {
tokenUsage: { completionTokens: 26, promptTokens: 53, totalTokens: 79 },
finish_reason: "stop"
},
tool_calls: [],
invalid_tool_calls: []
},
HumanMessage {
lc_serializable: true,
lc_kwargs: {
content: "What is my name?",
additional_kwargs: {},
response_metadata: {}
},
lc_namespace: [ "langchain_core", "messages" ],
content: "What is my name?",
name: undefined,
additional_kwargs: {},
response_metadata: {}
},
AIMessage {
lc_serializable: true,
lc_kwargs: {
content: "I'm sorry, I don't have access to your personal information. Can I help you with anything else?",
tool_calls: [],
invalid_tool_calls: [],
additional_kwargs: { function_call: undefined, tool_calls: undefined },
response_metadata: {}
},
lc_namespace: [ "langchain_core", "messages" ],
content: "I'm sorry, I don't have access to your personal information. Can I help you with anything else?",
name: undefined,
additional_kwargs: { function_call: undefined, tool_calls: undefined },
response_metadata: {
tokenUsage: { completionTokens: 22, promptTokens: 73, totalTokens: 95 },
finish_reason: "stop"
},
tool_calls: [],
invalid_tool_calls: []
}
]
Summary memory
We can use this same pattern in other ways too. For example, we could use an additional LLM call to generate a summary of the conversation before calling our chain. Let’s recreate our chat history and chatbot chain:
await demoEphemeralChatMessageHistory.clear();
await demoEphemeralChatMessageHistory.addMessage(
new HumanMessage("Hey there! I'm Nemo.")
);
await demoEphemeralChatMessageHistory.addMessage(new AIMessage("Hello!"));
await demoEphemeralChatMessageHistory.addMessage(
new HumanMessage("How are you today?")
);
await demoEphemeralChatMessageHistory.addMessage(new AIMessage("Fine thanks!"));
const runnableWithSummaryMemoryPrompt = ChatPromptTemplate.fromMessages([
[
"system",
"You are a helpful assistant. Answer all questions to the best of your ability. The provided chat history includes facts about the user you are speaking with.",
],
new MessagesPlaceholder("chat_history"),
["human", "{input}"],
]);
const summaryMemoryChain = runnableWithSummaryMemoryPrompt.pipe(llm);
const chainWithMessageHistory3 = new RunnableWithMessageHistory({
runnable: summaryMemoryChain,
getMessageHistory: (_sessionId) => demoEphemeralChatMessageHistory,
inputMessagesKey: "input",
historyMessagesKey: "chat_history",
});
And now, let’s create a function that will distill previous interactions into a summary. We can add this one to the front of the chain too:
const summarizeMessages = async (_chainInput: Record<string, any>) => {
const storedMessages = await demoEphemeralChatMessageHistory.getMessages();
if (storedMessages.length === 0) {
return false;
}
const summarizationPrompt = ChatPromptTemplate.fromMessages([
new MessagesPlaceholder("chat_history"),
[
"user",
"Distill the above chat messages into a single summary message. Include as many specific details as you can.",
],
]);
const summarizationChain = summarizationPrompt.pipe(llm);
const summaryMessage = await summarizationChain.invoke({
chat_history: storedMessages,
});
await demoEphemeralChatMessageHistory.clear();
demoEphemeralChatMessageHistory.addMessage(summaryMessage);
return true;
};
const chainWithSummarization = RunnableSequence.from([
RunnablePassthrough.assign({
messages_summarized: summarizeMessages,
}),
chainWithMessageHistory3,
]);
Let’s see if it remembers the name we gave it:
await chainWithSummarization.invoke(
{
input: "What did I say my name was?",
},
{
configurable: { sessionId: "unused" },
}
);
AIMessage {
lc_serializable: true,
lc_kwargs: {
content: 'You introduced yourself as "Nemo."',
tool_calls: [],
invalid_tool_calls: [],
additional_kwargs: { function_call: undefined, tool_calls: undefined },
response_metadata: {}
},
lc_namespace: [ "langchain_core", "messages" ],
content: 'You introduced yourself as "Nemo."',
name: undefined,
additional_kwargs: { function_call: undefined, tool_calls: undefined },
response_metadata: {
tokenUsage: { completionTokens: 8, promptTokens: 87, totalTokens: 95 },
finish_reason: "stop"
},
tool_calls: [],
invalid_tool_calls: []
}
await demoEphemeralChatMessageHistory.getMessages();
[
AIMessage {
lc_serializable: true,
lc_kwargs: {
content: "The conversation consists of a greeting from someone named Nemo and a general inquiry about their we"... 86 more characters,
tool_calls: [],
invalid_tool_calls: [],
additional_kwargs: { function_call: undefined, tool_calls: undefined },
response_metadata: {}
},
lc_namespace: [ "langchain_core", "messages" ],
content: "The conversation consists of a greeting from someone named Nemo and a general inquiry about their we"... 86 more characters,
name: undefined,
additional_kwargs: { function_call: undefined, tool_calls: undefined },
response_metadata: {
tokenUsage: { completionTokens: 34, promptTokens: 62, totalTokens: 96 },
finish_reason: "stop"
},
tool_calls: [],
invalid_tool_calls: []
},
HumanMessage {
lc_serializable: true,
lc_kwargs: {
content: "What did I say my name was?",
additional_kwargs: {},
response_metadata: {}
},
lc_namespace: [ "langchain_core", "messages" ],
content: "What did I say my name was?",
name: undefined,
additional_kwargs: {},
response_metadata: {}
},
AIMessage {
lc_serializable: true,
lc_kwargs: {
content: 'You introduced yourself as "Nemo."',
tool_calls: [],
invalid_tool_calls: [],
additional_kwargs: { function_call: undefined, tool_calls: undefined },
response_metadata: {}
},
lc_namespace: [ "langchain_core", "messages" ],
content: 'You introduced yourself as "Nemo."',
name: undefined,
additional_kwargs: { function_call: undefined, tool_calls: undefined },
response_metadata: {
tokenUsage: { completionTokens: 8, promptTokens: 87, totalTokens: 95 },
finish_reason: "stop"
},
tool_calls: [],
invalid_tool_calls: []
}
]
Note that invoking the chain again will generate another summary generated from the initial summary plus new messages and so on. You could also design a hybrid approach where a certain number of messages are retained in chat history while others are summarized.
Next steps
You’ve now learned how to manage memory in your chatbots
Next, check out some of the other guides in this section, such as how to add retrieval to your chatbot.